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Abstract

The local magnetization distribution Mðx; tÞ and the net MR signal S arising from a one-dimensional periodic structure with

permeable barriers in a Tanner–Stejskal pulsed-field gradient experiment are considered. In the framework of the narrow pulse

approximation, the general expressions for Mðx; tÞ and S as functions of diffusion time and the bipolar field gradient strength are

obtained and analyzed. In contrast to a system with impermeable boundaries, the signal S as a function of the b-value is modeled

well as a bi-exponential decay not only in the short-time regime but also in the long-time regime. At short diffusion times, the local

magnetization Mðx; tÞ is strongly spatially inhomogeneous and the two exponential components describing S have a clear physical

interpretation as two ‘‘population fractions’’ of the slow- and fast-diffusing quasi-compartments (pools). In the long-diffusion time

regime, the two exponential components do not have clear physical meaning but rather serve to approximate a more complex

functional signal form. The average diffusion propagator, obtained by means of standard q-space analysis procedures in the long-

diffusion time regime is explored; its structure creates the deceiving appearance of a system with multiple compartments of different

sizes, while in reality, it reflects the permeable nature of boundaries in a system with multiple compartments all of the same size.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

It is well known that the presence of barriers leads to

a non-mono-exponential b-value dependence of diffu-

sion-attenuated MR signal. In numerous MR studies in

biological systems, this dependence can be modeled well

by a bi-exponential function with two different diffusion
coefficients (large/fast and small/slow). The two expo-

nential components are often ascribed to two physical

compartments (typically, the extra- and intracellular

spaces) in tissue. (For example, see the special issue of

NMR in Biomedicine [1] and numerous references

therein.)
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We recently reported another possible origin of the

‘‘bi-exponentiality’’ of the diffusion-attenuated MR

signal [2]. It was shown that the b-value dependence of

diffusion-attenuated MR signal from a single compart-

ment with an impermeable boundary in a Tanner–Ste-

jskal pulse-field gradient experiment could also be

approximated to a remarkable degree by a bi-exponen-
tial function at short diffusion time t � tD, where

tD ¼ a2=D0 is the ‘‘characteristic diffusion time’’ (a is a

compartment size, D0 is the free-diffusion coefficient).

The physical underpinning of this approximation is the

presence of a gradient-induced strongly inhomogeneous

distribution of local transverse magnetization Mðx; tÞ
at t � tD. For cells of micron size, tD � 1ms, whereas

most MR diffusion studies on humans and animals
are usually performed with diffusion times much longer

than 1ms. Therefore this short-t mechanism of
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‘‘bi-exponentiality’’ is relevant only for rather large cells
such as the giant squid axon with diameter �300 lm [3].

In the long-diffusion time regime, tP tD, the bi-ex-

ponential behavior of the diffusion-attenuated MR sig-

nal can, in some cases, obviously be related to the tissue

compartmentalization or a geometrical structure.

However, in other cases, the origin of ‘‘bi-exponential-

ity’’ remains ‘‘mysterious’’ [4]. In particular, the frac-

tional amplitudes of fast and slow diffusion components
found by bi-exponential modeling of experimental data

do not coincide with the known volume fractions of

extra- and intracellular spaces. Here it is likely that a bi-

exponential function simply describes the complex sig-

nal decay behavior better than does a mono-exponential

function. Thus, there is no simple relationship between

the bi-exponential model’s amplitudes and decay rate

constants and the physical parameters describing the
microstructure of the structure under investigation. This

point was clearly demonstrated in [5] by means of

computer simulations. A general theoretical approach

based on a statistical consideration that takes into ac-

count the diversity of tissue microstructure was devel-

oped in [6]. Experimentally, this point was also

demonstrated in [7].

In the present paper, we demonstrate that bi-expo-
nential behavior of the diffusion-attenuated MR signal

in both short- and long-diffusion time regimes can be

observed in a simple system with identical compart-

ments separated by permeable boundaries (membranes).

In the short-diffusion time regime, the physical origin of

‘‘bi-exponentiality’’ is the same as in the one-compart-

ment model with impermeable boundaries [8], an inho-

mogeneous distribution of the transverse magnetization
(the finite permeability of the boundaries l leads only to

quantitative variations in bi-exponential parameters).

However, in the long-diffusion time regime, the perme-

ability of the boundaries plays the major role defining

bi-exponential signal decay behavior.

Development of a quantitative description of pulse-

field gradient MR signal formation in multi-compart-

ment systems with impermeable barriers between
compartments in biological and porous media has been

the subject of numerous studies, in which different

approaches have been exploited. Generally, the local

magnetization satisfies the well-known Bloch–Torrey

equation [9] with appropriate boundary conditions.

However, an analytical (or ‘‘close-to-analytical’’) solu-

tion to this equation can be found only for compart-

mental arrangements of the simplest geometry [8,10].
To the best of our knowledge, no analytical solution to

the Bloch–Torrey equation is known for a system with

permeable boundaries, and therefore numerical calcu-

lations and/or approximations are needed. In particu-

lar, the narrow pulse approximation has been used for

an analysis of the MR signal in a one-dimensional

periodic structure with permeable barriers [11] and in a
system containing a sphere with permeable surface
[12,13]. Numerous reports have been devoted to com-

puter (Monte-Carlo) simulations or finite difference

numerical solutions of the diffusion or Bloch–Torrey

equations that make it possible to describe the MR

signal in rather complicated multi-compartment struc-

tures [5,14–17]. A phenomenological approach based

on introducing residence or pre-exchange lifetimes of

the magnetization in compartments (two-site K€arger
model and its three- and multi-site generalizations) has

been developed in [18–23]. At long diffusion times,

when a multi-compartment system can be characterized

by a time-independent apparent diffusion coefficient

(ADC), D, different theoretical models have been ex-

amined in [14,21,24].

Practically all these studies describe the net MR sig-

nal in the system under consideration, whereas the local
magnetization distribution has been discussed only re-

cently [2,5,8]. A description of the time and spatial

evolution of the local magnetization provides new in-

sights into understanding of MR signal formation, as

compared to a description of the net signal alone. In the

present report, we describe the local magnetization dis-

tribution and the net signal in a multi-compartment

system that allows a rather simple analytical solution in
the narrow pulse approximation. This system is the one-

dimensional, infinite, periodic structure with permeable

barriers between compartments. The net MR signal in

such a system was first considered by Tanner [11]. As

noted in [14,24], this model leads to overemphasizing the

influence of barriers that would be observed in real

multi-barrier structures. This is because spin diffusion is

‘‘stopped’’ at long times by the model system’s barriers
(if the permeability tends to zero) and, thus, D ! 0. In

contrast, for real three-dimensional situations, e.g., in

biological systems, spins can diffuse around compart-

ments, e.g., cells, and, therefore, D, determined by tor-

tuosity, remains finite. Nevertheless, we adopt this

simple model because the mathematical approach pro-

posed here makes it possible to obtain rather simple

expressions for the distribution of local magnetization
and the net signal, allowing informative analyses in

some practically important limiting cases. Besides, the

model provides the correct behavior for an arbitrary

system at short times when long trajectories (around

compartments) can be ignored. In this regime, the time

dependence of ADC is determined by a surface-to-vol-

ume ratio and is in agreement with a general expression

obtained in [25].
2. General solution

Let us consider a uniform initial spin distribution

contained in a one-dimensional infinite periodic struc-

ture consisting of compartments of size a separated by
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non-absorbing and non-depolarizing boundaries (in-
terfaces) of permeability l. We consider a standard

Stejskal–Tanner experiment with a pulse sequence

composed of a 90� RF pulse followed by two com-

pensated gradient pulses of strength G and duration d
placed symmetrically about a 180� RF refocusing pulse

and separated by diffusion time t. The field gradient is

applied along the normal to the boundaries. Note that

for mathematical convenience, we use in this paper a
notation t for the diffusion time (an interval separating

the gradient pulses) rather than a more frequently used

notation D.
For a one-dimensional system of arbitrary structure,

the resulting net MR spin echo signal normalized to its

initial value in the narrow pulse approximation [26,27]

can be written as

S ¼
Z 1

�1

Z 1

�1
dxdx0 expðiqðx0 � xÞÞqðx0ÞP ðx; x0; tÞ; ð1Þ

where q ¼ cGd, c is the magnetogyric ratio and qðx0Þ is
the initial spin distribution. The signal S explicitly de-

pends on the diffusion time t and the parameter q; for
brevity, the arguments in S will be suppressed

throughout the paper. The propagator P ðx; x0; tÞ defin-

ing the probability for a spin to diffuse from a point x0 to
a point x during diffusion time t, satisfies the diffusion

equation

oP
ot

¼ D0

o2P
ox2

; ð2Þ

where D0 is the diffusion coefficient in the absence of

restrictive boundaries, i.e., D0 is the ‘‘free’’-diffusion

coefficient. Eq. (2) is subject to the initial condition

P ðx; x0; 0Þ ¼ dðx� x0Þ ð3Þ

and, introducing the specific one-dimensional model

under consideration, to boundary conditions on the in-

terfaces located at points x ¼ na. A general solution to
Eq. (2) is a piecewise function. Denoting the latter in the

nth compartment, ðn� 1Þa6 x6 na, as Pnðx; x0; tÞ, the

boundary conditions can be written in the form

oPn�1

ox
¼ oPn

ox
; D0

oPn
ox

¼ lðPn � Pn�1Þ at x ¼ na:

ð4Þ
The particular case l ¼ 1 correspond to free diffusion,

the case l ¼ 0 corresponds to completely impermeable

boundaries.

In [11], the piecewise propagator P ðx; x0; tÞ was found
in the form of an eigenfunction expansion for the case of

a finite number N of compartments, eigenvalues of the
problem being calculated numerically (for a periodic

system with infinite N , this procedure is obviously im-

possible). As mentioned in Section 1, this cumbersome

numerical evaluation of eigenvalues did not take ad-

vantage of the periodicity of the system because the
propagator P ðx; x0; tÞ depends on the initial position x0
and is an aperiodic function. The expression for the net

signal found in [11] is essentially impossible to explore

analytically and only numerical results for the propa-

gator and, as a consequence, for the signal are available.

In what follows, we use another approach based on

deriving an equation directly for the local magnetization

Mðx; tÞ.
In the narrow pulse approximation adopted here, the

local transverse magnetization can be found simply by

removing the integration over x in Eq. (1):

Mðx; tÞ ¼
Z 1

�1
dx0 expðiqðx0 � xÞÞqðx0ÞP ðx; x0; tÞ: ð5Þ

By making use of Eqs. (2)–(4), it can be readily verified

that the function Mðx; tÞ satisfies Eq. (6)

oM
ot

¼ D0

o2M
ox2

�
þ 2iq

oM
ox

� q2M
�

ð6Þ

with the initial condition

Mðx; 0Þ ¼ qðxÞ: ð7Þ
For a uniform initial spin distribution, qðxÞ ¼ 1, the

local magnetization is a periodic function of the coor-

dinate x, Mðx; tÞ ¼ Mðxþ a; tÞ, which follows from an

obvious property of the propagator in the periodic

structure of period a: P ðx; x0; tÞ ¼ P ðxþ a; x0 þ a; tÞ.
The local magnetization Mðx; tÞ is also a piecewise

function of x. Denoting a solution to Eq. (6) in the nth
compartment, ðn� 1Þa6 x6 na, as Mnðx; tÞ, the bound-

ary conditions at the interfaces can be written in the

form:

oMn
ox þ iqMn ¼ oMn�1

ox þ iqMn�1;
at x ¼ na

D0
oMn
ox þ iqMn

� �
¼ l Mn �Mn�1ð Þ

ð8Þ

The Laplace transformation of the functions Mnðx; tÞ,

mnðx; pÞ ¼
Z 1

0

dtMnðx; tÞ expð�p tÞ; ð9Þ

satisfies the ordinary differential equation (hereafter we

consider qðxÞ ¼ 1)

o2mn

o~x2
þ 2i~q

omn

o~x
� ð~q2 þ j2Þmn ¼ �1 ð10Þ

with the boundary conditions

m0
n þ i~qmn ¼ m0

n�1 þ i~qmn�1;

m0
n þ i~qmn ¼ ~lðmn � mn�1Þ at ~x ¼ n:

ð11Þ

Here we introduce dimensionless variables ~x ¼ x=a,
~q ¼ qa, j ¼ ðp=D0Þ1=2a, and ~l ¼ la=D0; a prime denotes

a derivative with respect to ~x. As the local magnetization

is a periodic function, mnð~x; pÞ ¼ mn�1ð~x� 1; pÞ, the
boundary conditions (11) can be re-written in the form

containing only the function mnðx; pÞ:



Fig. 1. The real (A) and imaginary (B) parts of the local magnetization

in the periodic structure (s ¼ 0:01, ~l ¼ 0:5).
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m0
nðn� 1; pÞ þ i~qmnðn� 1; pÞ ¼ m0

nðn; pÞ þ i~qmnðn; pÞ;
m0

nðn; pÞ þ i~qmnðn; pÞ ¼ ~l½mnðn; pÞ � mnðn� 1; pÞ�:
ð12Þ

A solution of Eq. (10) has the form:

mnð~x; pÞ ¼ An expðk1~xÞ þ Bn expðk2~xÞ þ C; ð13Þ
where

k1;2 ¼ �i~q� j; C ¼ ðj2 þ ~q2Þ�1
: ð14Þ

The coefficients An and Bn are readily determined from

the boundary conditions (12):

An ¼ � iqC
m

ðexpðk2Þ � 1Þ expð�k1ðn� 1ÞÞ;

Bn ¼ � iqC
m

ðexpðk1Þ � 1Þ expð�k2ðn� 1ÞÞ;

m ¼ jðexpðk2Þ � expðk1ÞÞ
þ 2~lðexpðk1Þ � 1Þðexpðk2Þ � 1Þ:

ð15Þ

Substituting Eqs. (14) and (15) into Eq. (13), we get

mð~x; pÞ ¼ 1

ðj2 þ ~q2Þ þ
i~q expð�i~q~xÞ
ðj2 þ ~q2Þ

� ½coshðjð1� ~xÞÞ � expði~qÞ coshðj~xÞ�
½2~lðcosh j� cos ~qÞ þ j sinh j� : ð16Þ

Hereafter we write down the magnetization distribution

only in the compartment 06~x6 1 (n ¼ 1), omitting the

subscript n; due to periodicity of the magnetization

distribution, the function mnð~x; pÞ in the nth compart-

ments is given by Eq. (16) with the substitution
~x ! ~x� nþ 1. The Laplace transform of the net signal

(per unit length), sðpÞ, can be found by integrating Eq.

(16) over ~x within the interval ½0; 1�:

sðpÞ ¼ 1

ðj2 þ ~q2Þ þ
2~q2

ðj2 þ ~q2Þ2

� ðcosh j� cos ~qÞ
½2~lðcosh j� cos ~qÞ þ j sinh j� : ð17Þ

In the time domain, the magnetizationMðx; tÞ and the

net signal (per unit length) SðtÞ are determined by the

inverse Laplace transformation of Eqs. (16) and (17).

Using Mellin’s formula, the functions Mðx; tÞ and SðtÞ
are, after some algebra, of the form:

Mðx; tÞ

¼ 2i~q
X
j

expð�k2j sÞexpð�iqxÞ½cosðkjð1� x=aÞÞ� expði~qÞcosðkjx=aÞ�
ð~q2� k2j Þ½ð2~lþ1Þsinkjþkj coskj�

;

ð18Þ

S ¼ 2~q2

~l

X
j

expð�k2j sÞk2j sin kj
ð~q2 � k2j Þ

2½ð2~lþ 1Þ sin kj þ kj cos kj�
; ð19Þ

where s ¼ t=tD, tD ¼ a2=D0 is the characteristic diffusion

time; the sums in Eqs. (18) and (19) are over all non-

negative roots kj of the transcendental equation
2~lðcos k � cos ~qÞ � k sin k ¼ 0: ð20Þ

Note that the roots periodically depend on the param-

eter ~q, and, for their analysis, it is sufficient to consider

0 < ~q6 p. In the case of small reduced permeability,
~l � 1, all the roots are close to jp:

k0 ’ 2~l1=2 sin
~q
2
; j ¼ 0;

kj ’ jpþ 2~l
jp

½1� ð�1Þj cos ~q�; jP 1:
ð21Þ

In the opposite case of high permeability, ~l � 1, the

roots are approximately equal to

kj ’ ð2jp� ~qÞ 1

�
� 1

2~l

�
: ð22Þ

It follows from Eq. (18) that Mððnþ 1=2Þa� x; tÞ ¼
M�ððnþ 1=2Þaþ x; tÞ and thus the real part of the local

magnetization is a symmetric function whereas the

imaginary part is an antisymmetric function of the co-

ordinate x with respect to the center of each compart-

ment. As a consequence, only the real part of local
magnetization contributes to the net signal. Note also

that ReM is continuous on the boundaries whereas

ImM has a discontinuity. As an example, Fig. 1 illus-

trates a distribution of the real (A) and imaginary (B)

parts of the local magnetization Mðx; tÞ in the periodic

structure at short diffusion time t � tD (s � 1).



Fig. 2. The real (A) and imaginary (B) parts of the local magnetization

in a single period of the periodic structure for different diffusion times

s ¼ t=tD: 1, s ¼ 0:01; 2, s ¼ 0:05; 3, s ¼ 0:1; and 4, s ¼ 0:5. The re-

duced permeability and the b-value are fixed, ~l ¼ 0:5, bD0 ¼ 1.
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3. Results and discussion

In the limiting case of free diffusion (l ¼ 1), expres-

sions for Mðx; tÞ and S are easier to obtain directly from

the Laplace transform (16). In this limit, the second

terms in Eqs. (16) and (17) vanish, and the inverse La-

place transformation of the first terms immediately leads

to a homogeneous local magnetization distribution M
and to the well-known result for the net signal in the
case of unrestricted diffusion [27]:

S ¼ expð�bD0Þ; ð23Þ

where the b-value for the narrow pulse approximation is

equal to

b ¼ q2t: ð24Þ

In the opposite limit of completely impermeable bound-

aries (l ¼ 0), the roots of Eq. (20) are kj ¼ jp; j ¼
0; 1; 2; . . ., and Eqs. (18) and (19) reduce to

Mðx; tÞ ¼ ie�iqx 1� ei~q

~q

(

þ 2~q
X1
j¼1

expð�p2j2sÞcosðpjx=aÞ½1�ð�1Þjei~q�
ð~q2 �p2j2Þ

)
;

ð25Þ

SðtÞ ¼ 2ð1� cos~qÞ
~q2

þ 4~q2
X1
j¼1

expð�p2j2sÞ½1�ð�1Þj cos~q�
ð~q2 �p2j2Þ2

:

ð26Þ

Expression (26) coincides with the well-known result [28]

for the net MR signal in a single compartment with

impermeable boundaries.
Eqs. (18) and (19) make it possible to calculate the

local magnetization distribution and the net signal for

arbitrary values of permeability l. In Fig. 2Awe show the

real part of the local magnetization distribution, ReM ,

within a single compartment, calculated on the basis of

Eq. (18) at different diffusion times s ¼ t=tD for fixed

values of reduced permeability ~l ¼ 0:5 and b-value,
bD0 ¼ 1. At a very short diffusion time s ¼ 0:01 (line 1),
there are two clearly distinguished maxima located close

to the boundaries (edge enhancement effect) and a sub-

stantial area in the central part of the system where ReM
is small and uniform. Note that an absolute value of the

local magnetization, jMðx; tÞj, has maxima directly on the

boundaries whereas the maxima of ReM are slightly

shifted from them. The magnetization in the central part

of the compartment, where diffusion can be considered as
almost unrestricted, is largely determined by the b-value:
ReM ’ expð�bD0Þ 	 0:368 for bD0 ¼ 1. For a longer

time, s ¼ 0:05 (line 2), the maxima become broader and

the region of uniformmagnetization in the central part of

the compartment disappears. At s ¼ 0:1 (line 3), the
maxima merge. It is interesting to note that the value of

ReM at the boundaries (x ¼ 0 and x ¼ a) at s6 0:1 is also
determined mainly by the b-value and is described by the
free-diffusion expression ReMðx ¼ 0; tÞ ’ expð�bD0Þ
(see below Eq. (30)). However, for longer diffusion time

(s ¼ 0:5, line 4), ReM at the boundaries becomes already

substantially different from its free-diffusion value and

increases with time. At s > 1, ReM is practically uniform

everywhere and gradually increases with diffusion time

(motional narrowing regime).

The antisymmetric (with respect to the compart-
ment’s center) imaginary part of the local magnetiza-

tion, ImM , is shown in Fig. 2B for the same diffusion

times and ~l ¼ 0:5, bD0 ¼ 1. For s6 0:05, ImM is close

to 0 in the center part and achieves its extremal values at

the boundaries. For sP 0:1, the uniform central part

disappears and ImM is practically a linear function of x,
a slope decreasing as diffusion time increases. In the

motional narrowing regime, s > 1, the imaginary part of
the local magnetization is negligibly small, ImM ’ 0.



Table 1

Fit of the net signal SðbÞ to the bi-exponential function (31) in the

interval ~b 2 ½0; 2� (s ¼ 0:01)

~l 0 0.1 0.5 2.0 20

D1=D0 0.260 0.264 0.271 0.296 0.431

D2=D0 0.912 0.913 0.916 0.925 0.968

f 0.096 0.095 0.088 0.069 0.013
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Fig. 2 illustrates the local magnetization for a fixed
reduced permeability ~l ¼ 0:5. As the permeability de-

creases, the maxima in ReM at short times increase and

for ~l < 0:1, the local magnetization becomes practically

independent of ~l. In the motional narrowing regime,

ReM increases as permeability decreases.

Simple analytical expressions for the signal can be

obtained in the short-diffusion time regime, when t � tD
(s � 1), and in the long-diffusion time regime, when
t � tD (s � 1).

3.1. Short-diffusion time regime

In the short-diffusion time regime, t � tD, the sum in

Eqs. (18) and (19) converges rather slowly. To obtain an

explicit expression for the time dependence of the signal

in this regime, it is more convenient first to expand the
Laplace transform sðpÞ for large jpj � 1,

sðpÞ ’ 1

p þ ~q2
þ 2~q2

ðp þ ~q2Þ2ðjþ 2~lÞ
; jpj � 1 ð27Þ

and then use the inverse Laplace transformation. An
explicit analytical expression for the signal SðtÞ in the

short-diffusion time regime t � tD, is given in Appendix

A. This expression can be further simplified if the fol-

lowing conditions are also met: t � tD=ðqaÞ2 and

t � D0=4l2:

SðtÞ ’ 1� DðtÞq2t;

DðtÞ ’ D0 1

"
� 8

3p1=2

ðD0tÞ1=2

a
� q2D0t

2
þ 2

l t
a
þOðt3=2Þ

#
:

ð28Þ

In Eq. (28) a time-dependent ADC DðtÞ is introduced.
The first three terms in the function DðtÞ are similar to

those in a short-diffusion time expansion of the ADC in

the system with impermeable boundaries; in particular,

the second term is a one-dimensional analog of a ‘‘sur-

face-to-volume’’ term found in [25]. The term propor-

tional to l describes a contribution to DðtÞ related to the

finite permeability of the boundaries. The permeability

contribution to the ADC DðtÞ at short times is small as
compared to the surface-to-volume term as was previ-

ously noted in [24]. Obviously, however, for high per-

meability, the approximate expression (28) takes place

only at very short diffusion time and is completely in-

valid in the limit of free diffusion, l ! 1.

The local magnetization distribution at short times

can also be obtained in an analytical form in the similar

manner. In particular, at the boundaries (x ¼ 0), the
expansion of the Laplace transform of the local mag-

netization mðx ¼ 0; pÞ at jpj � 1 has the form:

mðx ¼ 0; pÞ ’ 1

p þ ~q2
þ i~q
ðp þ ~q2Þð2~lþ jÞ ; p � 1:

ð29Þ
The inverse Laplace transformation of Eq. (29) leads to

Mðx ¼ 0; tÞ ¼ expð�D0q2tÞ þ iqaI1ðqa; l; tÞ t � tD;

ð30Þ
where I1ðqa; l; tÞ is a real function of its arguments (it is

given in Appendix A). It is worth noting that, according

to Eq. (30), the quantity Re½Mnðx ¼ 0; tÞ� is independent
of the permeability and its time dependence is described

by the expression characteristic to the free diffusion.
As shown in [2] for the model with impermeable

boundaries, at short times, t � tD, when the spatial

distribution of the local magnetization is strongly in-

homogeneous and the quasi-two-compartments can be

distinguished, the net signal as a function of the b-value,
b ¼ q2t, can be extremely well approximated by the bi-

exponential function (diffusion time t is fixed)

Sb ¼ f expð�bD1Þ þ ð1� fÞ expð�bD2Þ; ð31Þ
where f is the ‘‘volume fraction’’ of the spins near the

boundaries. A physical explanation of this is given in [2].
At t � tD, all spins can be conditionally divided into two

populations: one population, comprising spins located

far from the boundaries, can be considered as diffusion-

unrestricted (the fast-diffusing pool); the local magneti-

zation of this pool is uniform (with ReM ’ expð�bD0Þ
and ImM ’ 0). The other population, comprising spins

located near the boundaries, is diffusion-restricted due

to encounters with the boundaries (the slow-diffusion
pool). Although the magnetization of this pool is non-

uniform, the presence of the sharp maxima allows one to

describe a contribution of this pool to the total signal by

means of a net ADC D1 < D0.

A similar situation takes place in the system with

permeable boundaries. In Table 1, we provide the results

of fitting the net signal in our periodic model (as a

function of b-value in the interval b 2 ½0; 2�), calculated
by means of Eq. (19), to the function (31) for different ~l
at short diffusion time, s ¼ 0:01 (at fixed time, the b-
value is varied by changing the gradient strength G).
Fitting parameters are D1, D2, and f. The bi-exponential
function (31) fits the signal SðbÞ extraordinarily well:

v2 < 10�9.

As we see from Table 1, as permeability increases,

the ADC D2 corresponding to the fast-diffusion pool
tends to the free-diffusion coefficient D0, whereas the

‘‘population fraction’’ of the slow-diffusion pool f de-

creases because the exchange of spins across the
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boundaries ‘‘nibbles’’ the slow-diffusing pool, decreas-
ing the maxima and, consequently, decreasing f. The

ADC D1 tends to some constant value determined only

by b-value and permeability l and independent of the

compartment size a, because spins located near one

boundary do not encounter any other boundary at

t � tD.
Table 1 illustrates bi-exponential modeling of the net

signal at short diffusion time s ¼ 0:01. As diffusion time
increases and the maxima in the real part of the local

magnetization progressively decrease, the ‘‘population

fraction’’ f of the slow-diffusion compartment decreases.

In the case of impermeable boundaries, for sufficiently

long time, when the local magnetization distribution is

smooth, the concept of a division of the system into two

components (pools) or two ‘‘quasi-compartments’’ be-

comes meaningless and a bi-exponential model fails [2].
However, as we will demonstrate below, in the system

with permeable boundaries, bi-exponential modeling of

the signal is possible in the long-diffusion time regime as

well.

3.2. Long-diffusion time regime

In the long-diffusion time regime, s � 1, the time
dependence of the net signal is mainly determined by the

minimal root kmin of Eq. (20). According to Eqs. (21)

and (22), this minimal root varies from 0 for ~l ¼ 0 to
~qð1� ð2~lÞ�1Þ for ~l � 1. The dependence of kmin on the

reduced permeability ~l is shown in Fig. 3 for different

values of the parameter ~q.
For completely impermeable boundaries, the signal

tends to a constant (in time); its q-dependence is de-
scribed by the well-known sinc-function [29]:
Fig. 3. The minimal root kmin of Eq. (20) as a function of the reduced

permeability ~l ¼ la=D0 at different values of the parameter ~q ¼ qa: 1,
~q ¼ p=10; 2, ~q ¼ p=3; 3, ~q ¼ p=2; and 4, ~q ¼ p.
SðtÞ ! sinc2
qa
2

� �
¼ sinðqa=2Þ

ðqa=2Þ

2

: ð32Þ

However, for any ~l 6¼ 0, it is not so: at t � tD, the signal
mono-exponentially tends to 0, SðtÞ � expð�C tÞ with

the rate constant C ¼ D0k2min=a
2. In particular, for the

case of small permeability, ~l � 1, Eq. (32) is modified as

SðtÞ ’ sinc2
qa
2

� �
exp

�
� 4 sin2ðqa=2Þ t

tl

�
; tl ¼

a
l
:

ð33Þ
In fact, Eq. (33) is valid not only at t � tD but under

‘‘softer’’ condition t > tD. In the case qa � 1, the signal
(33) can be re-written as a mono-exponential function of

b-value:

S ’ expð�bDÞ; D ¼ alþ a2

12t
: ð34Þ

At t � tD, the phases of all spins within a single com-

partment have become identical (motional narrowing

regime) and the net signal decay is completely deter-

mined by a slow (proportional to the permeability l)
spin exchange between adjacent compartments. Indeed,

expression (33) represents a one-dimensional analog of
the multi-site exchange approach developed by Calla-

ghan [20, Chapter 7] (see also the pore-to-pore hopping

model [22]).

For the case of high permeability, ~l � 1, the long-

time behavior is mainly determined by diffusion and is

similar to Eq. (23):

SðtÞ ’ exp½�bD�; D ¼ D0ð1� ~l�1Þ: ð35Þ
Although Eq. (35) is obtained under condition s � 1, a

comparison with a numerical calculation shows that for
~l > 10, Eq. (35) provides an excellent approximation for

the signal at arbitrary diffusion time t. For an arbitrary

permeability l, an analytical expression for the minimal

root kmin of Eq. (20) is, generally, unavailable. However,
it can be easily found in the case ~q � 1,

kmin ’ ~q
~l

~lþ 1

 !1=2

ð36Þ

and, consequently,

SðtÞ ’ exp½�bD�; D ¼ D0

~l
~lþ 1

¼ D0

la
laþ D0

: ð37Þ

This limiting expression for the ADC D at long diffusion
time and q ! 0 was found by Tanner [11]. For the case

of steady-state diffusion between two distant points of a

system such as ours, a similar relationship between D0

and an overall diffusion coefficient D was also noted by

Crick [30].

Thus, in the long-diffusion time regime and under

condition qa � 1, the signal depends on the parameter q
and time t only in the combination b ¼ q2t and can be
approximated by a mono-exponential in the b-value



Fig. 4. The dependence of ln S on the reduced b-value ~b ¼ bD0 in the

motional narrowing regime. Diffusion time is fixed, s ¼ t=tD ¼ 2. Line

1, l ¼ 0; line 2, l ¼ 0:1; dotted line, mono-exponential approximation

of S for l ¼ 0; dashed line, bi-exponential approximation (31) of S for

l ¼ 0:1.
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function (with some ADC D depending on a particular
case). Obviously, this is not the case for arbitrary qa

because the net signal, in general, depends on q and t in
more complicated combinations (or does not depend on

t at all, as in Eq. (32)). However, one can introduce the

b-value in any case by a formal substitution q ¼ ðb=tÞ1=2
and consider the signal as a function of b at fixed dif-

fusion time t. In fact, this procedure has been already

used when analyzing the bi-exponential modeling of the
signal in the short-diffusion time regime. In this con-

nection, a question arises which is motivated by nu-

merous analyses of MR diffusion data from intact

biological systems: is it possible to approximate the

signal in the long-diffusion time regime by the bi-expo-

nential function Sb, Eq. (31)? In the case of impermeable

boundaries, when the signal in the long-time regime is

described by the sinc-function expression (32), the an-
swer is negative, however, for l 6¼ 0 the answer is posi-

tive, provided that the permeability is high enough (see a

criterion below). In Table 2, we provide results of bi-

exponential modeling of the signal at t ¼ 2tD in the in-

terval ~b 2 ½0; 2� ðv2 < 10�9Þ.
For impermeable boundaries, l ¼ 0, the signal in the

interval b 2 ½0; 2� is mono-exponential in the b-value
with a low ADC (0:043D0), that is rather close to the
value D0/24 predicted by Eq. (34). For non-zero per-

meability, a bi-exponential model well describes the net

signal. With increase in permeability, both the parame-

ters D1 and D2 increase, whereas the ‘‘population frac-

tion’’ f of the slow-diffusion term tends to 0 and in the

limit of free diffusion, l ¼ 1, the signal becomes mono-

exponential with D2 ¼ D0, as expected.

To explain, why a bi-exponential model is possible for
l 6¼ 0 and fails for l ¼ 0, in Fig. 4we plot the quantity ln S
as a function of ~b at fixed diffusion time, s ¼ t=tD ¼ 2,

corresponding to the case of impermeable boundaries

(solid line 1) and to the case of permeable boundaries with
~l ¼ 0:1 (solid line 2). The dotted line corresponding to the
mono-exponential approximation for l ¼ 0 is valid only

for ~b < 10 and fails for larger ~b. The dashed line corre-

sponds well to the bi-exponential approximation (31) for
~l ¼ 0:1 in the interval ~b 2 ½0; 30� (fitting parameters:

f ¼ 0:36, D1=D0 ¼ 0:04, D2=D0 ¼ 0:19Þ.
As we see in Fig. 4, in the system with finite perme-

ability, there is an interval of b-values, when the signal in

the motional narrowing regime can be approximated by

the bi-exponential function Sb (31). In the case of im-
Table 2

Modeling of the net signal SðbÞ by the bi-exponential function (31) in

the interval ~b 2 ½0; 2� (s ¼ 2)

~l 0 0.1 0.5 2.0 20

D1=D0 — 0.060 0.207 0.518 0.773

D2=D0 0.043 0.204 0.426 0.708 0.954

f — 0.547 0.340 0.194 0.005
permeable boundaries, such an interval is absent. There

is an important difference between solid lines 1 and 2: a

curvature of the former is negative, o2ðln SÞ=o~b2 < 0,

whereas that of the latter is positive in the certain in-

terval of b-value. For the bi-exponential function Sb, Eq.
(31), the curvature of ln Sb is always positive,

o2ðln SbÞ=o~b2 > 0. That is why it is not possible to ap-

proximate line 1 by a bi-exponential function. Whereas
line 2 allows such an approximation within the interval

of the b-value in which its curvature is positive,

o2ðln SÞ=o~b2 > 0. This interval substantially depends on

the permeability and exists only if l exceeds some crit-

ical value, lc. The latter can be found by equating

½o2ðln SÞ=o~b2�~b¼0 to 0. As a result, we get

~lc ¼
1

120s
or lc ¼

a
120 t

: ð38Þ

It is important to emphasize that in the long-diffusion

time regime (s > 1), the local magnetization is practi-

cally uniform and, in contrast to the short-diffusion time

regime, there is no physical interpretation of the model

parameters as corresponding to two pools (quasi-com-

partments). Moreover, values of model parameters

substantially depend on the interval of b-values over

which the analysis is made.

3.3. q-Space consideration

So far, we discussed the signal as a function of the

parameter q, diffusion time t, or b-value. It is also well

known that the Fourier transformation of the signal S
with respect to the parameter q (q-space imaging) gives

the so-called averaged diffusion propagator P ðx; tÞ [20]:

P ðx; tÞ ¼ 1

2p

Z 1

�1
dqS expðiqxÞ; ð39Þ



Fig. 5. The average propagator P ðx; tÞ for b ¼ 0 (line 1, dashed), and

for b ¼ 0:5 (line 2, solid).

Fig. 6. The relative populations of spins in the groups (‘‘weights’’), gn,
for different values of the parameter b ¼ 2l t=a. (A) b ¼ 0; (B) b ¼ 0:5;

(C) b ¼ 1; and (D) b ¼ 5.
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which determines a probability for a particle to diffuse a
distance x during diffusion time t, averaged over the

initial positions of the spins, x0. For the periodic struc-

ture under consideration,

P ðx; tÞ ¼ 1

a

Z a

0

dx0 P ðx0 þ x; x0; tÞ: ð40Þ

For free diffusion, P ðx; tÞ is Gaussian, Pðx; tÞ ¼
ð4pD0tÞ�1=2

expð�x2=4D0tÞ. In the cases, when the sig-

nal’s q-dependence is mono-exponential in q2 (like in

Eqs. (34), (35), and (37)), P ðx; tÞ is also Gaussian with
the corresponding ADC D rather than D0. In the general

case, the function P ðx; tÞ has a more complicated struc-

ture providing information on a system’s geometry

[20,29]. The average propagator P ðx; tÞ can be readily

calculated in the case s > 1 and ~l � 1, when the signal

is described by Eq. (33). Expanding the exponent in Eq.

(33) in series of the modified Bessel functions In, we

obtain

P ðx; tÞ ¼
X1
n¼0

gnðbÞuðx� naÞ;

gnðbÞ ¼ expð�bÞInðbÞ;
ð41Þ

where b ¼ 2l t=a and uðxÞ is the well-known Fourier

transform of sinc2ðaq=2Þ, describing the averaged

propagator in the case of impermeable boundaries [29],

uðxÞ ¼ ðjxþ aj þ jx� aj � 2jxjÞ=2: ð42Þ

In the case of impermeable boundaries, only the term

with n ¼ 0 contributes to Eq. (41) and the function

P ðx; tÞ has the well-known triangle form described by
Eq. (42) and is equal to 0 outside the interval jxj6 a. In
the case of finite permeability, it is a piecewise linear

function of the displacement x, only two terms in the

sum (nth and ðnþ 1Þth) contributing to P ðx; tÞ within the

interval na < jxj < ðnþ 1Þa. A spatial distribution of

the average propagator Pðx; tÞ is shown in Fig. 5 for two

values of the parameter b: b ¼ 0 (line 1) and b ¼ 0:5
(line 2).

It is important to note that the line 2 in Fig. 5 creates

the deceiving appearance of a multi-compartment sys-

tem with different compartment sizes, while it actually

reflects the permeable nature of boundaries in a multi-

compartment system with a single compartment size.

The structure of the average propagator (41) allows a

rather simple physical interpretation. Although in the

motional narrowing regime, s > 1, where the spins’
spatial distribution is uniform and there exists no spa-

tially distinct pools (in contrast to the short-diffusion

time regime), there exists an implicit differentiation of

diffusing spins. All the spins can be conditionally divided

into populations discriminated by the average displace-

ment traveled during diffusion time t. One group of spins

travels a distance less than the compartment size a, the
relative population of spins—‘‘weight’’—of this group is
equal to g0ðbÞ ¼ expð�bÞI0ðbÞ. A second group com-

prises spins that travel distances longer than a but less
than 2a, its ‘‘weight’’ is g1ðbÞ, and so on. In the case of

impermeable boundaries, b ¼ 0, only the first group of

spins contributes to the sum in Eq. (41) because

InðbÞ � bn, and P ðx; tÞ ¼ uðxÞ. For barely permeable

boundaries, b � 1, when only linear terms in b are ta-

ken into account, g1ðbÞ � b 6¼ 0, and the second group

of spins becomes ‘‘visible’’; accounting for terms pro-

portional to b2 makes the third group ‘‘visible’’ with
n ¼ 2, etc. Line 2 in Fig. 5 corresponds to a rather small

value of b ¼ 0:5, and therefore the average propagator

rapidly decreases with x (in Fig. 5 only the contributions

of first three terms are ‘‘visible’’). As the parameter b
increases, the central maximum P ð0; tÞ decreases

whereas the width of Pðx; tÞ increases. In the limit b � 1
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(very long diffusion time), it can be approximated by the
Gaussian envelope,

P ðx; tÞ ’ ð4pDtÞ�1=2
expð�x2=4DtÞ; D ¼ la; ð43Þ

though the piecewise linear structure of P ðx; tÞ holds for
any b. For better illustration, in Fig. 6 we present not

the average propagator itself but a histogram of the

‘‘weights’’ corresponding to different groups.
As mentioned above, at b ¼ 0 (impermeable bound-

aries) only the first group of spins exists. As b increases,

‘‘weights’’ of groups with n 6¼ 0 increase, in essence, the

presence of permeable boundaries has ‘‘discretized’’ the

spin population vis-�a-vis displacement distance; at

b � 1, the envelope characterizing the relative popula-

tions is described by the Gaussian function (43).
4. Conclusion

In the present paper, the local magnetization distri-

bution Mðx; tÞ and the net MR signal S arising from a

one-dimensional periodic structure with permeable bar-

riers in a Tanner–Stejskal pulsed-field gradient experi-

ment are considered. In the framework of the narrow
pulse approximation, the general expressions for Mðx; tÞ
and S as functions of diffusion time t and the parameter

q ¼ cGd are obtained and analyzed. The real part of the

local magnetization is shown to be continuous at the

boundaries whereas the imaginary part is discontinuous.

At short diffusion times, t � tD, the local magnetization

is strongly spatially inhomogeneous and has the maxima

in the vicinity of the boundaries, the amplitudes of these
maxima depending on barrier permeability. The net

signal as a function of the b-value at constant diffusion

time is well approximated in the short-diffusion time

regime by a bi-exponential function with a clear physical

interpretation of the model parameters as the ADCs and

‘‘population fractions’’ of the slow- and fast-diffusing

quasi-compartments (pools). The bi-exponential (in b-
value) behavior of the signal in a single-compartment
system with impermeable boundaries can be observed at

t < 0:02 tD, that implies an upper limit for the diffusion

time. Let us take the observed water diffusion coefficient

in biological systems �1 lm2/ms as a lower limit on the

‘‘free’’-diffusion coefficient D0 for intracellular water.

For a cell size a�1 lm, the characteristic diffusion time is

then tD � 1ms. For typical cell membrane, l � 10�2–

10�3 cm/s, this condition remains practically the same.
Thus, bi-exponential signal behavior due to the inho-

mogeneous magnetization distribution in the short-dif-

fusion time regime can be observed in cells with a � 1lm
only at extremely short diffusion time, t < 0:02ms. Al-

ternatively, for a typical diffusion time t � 10ms, only

much larger cells with a � 25lm (tD � 600ms) or greater

would reveal the short-time bi-exponential net signal

behavior.
In the long-diffusion time regime, t > tD, the net
signal from our multi-compartment system with per-

meable boundaries is mono-exponential as a function

of diffusion time at constant q but has a more com-

plicated structure as a function of q2 at constant t. In
contrast to systems with impermeable boundaries, the

signal in the long-diffusion time regime can also be well

approximated by a bi-exponential function. Such a

quasi-bi-exponential behavior of the signal in the long-
diffusion time regime can be observed when the con-

dition l > lc (see Eq. (38)) is met. This implies a lower

limit on the diffusion time t. For l � 10�2–10�3 cm/s

and cells with a � 1lm, the condition l > lc is met for

the diffusion time t > 1ms. The long-diffusion time

regime holds for such cells at t > tD � 1ms. Conse-

quently, the bi-exponential behavior of the signal,

caused by finite membrane permeability, can be ob-
served at typical experimental diffusion times (10ms

and longer).

Hence, bi-exponential behavior of the signal, arising

from the above-elucidated considerations, can be ex-

pected in biological cells with permeable membranes in

both the short- and long-diffusion time regimes. In the

short-diffusion time regime, the physical origin of ‘‘bi-

exponentiality’’ is the same as in the one-compartment
model with impermeable boundaries, an inhomoge-

neous distribution of the transverse magnetization.

However, in the long-diffusion time regime, the per-

meability of the boundaries plays the major role in

defining bi-exponential signal behavior. Obviously, this

bi-exponential behavior cannot be interpreted as re-

sulting from two distinct physical compartments. This

mechanism of ‘‘bi-exponentiality’’ of the signal should
be taken into account when interpreting experimental

results.

The average propagator P ðx; tÞ obtained in the case

t > tD, ~l � 1 by means of Fourier transformation of the

signal with respect to q reveals an implicit discrete dis-

crimination of spin populations by distance traveled

during time t. The structure of P ðx; tÞ in this regime

creates the deceiving appearance of a multi-compart-
ment system with different compartment sizes. In actu-

ality, this structure reflects the permeable nature of

boundaries in a multi-compartment system with a single

compartment size. This effect should be also taken into

account for correct interpretation of experimental data

derived by q-space imaging procedures on systems with

permeable boundaries.
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Appendix A

The net signal (per unit length) SðtÞ and the local

magnetization distribution at the boundaries Mðx ¼ 0; tÞ
in the short-diffusion time regime, t � tD, are given by

the inverse Laplace transformation of Eqs. (27) and (29),

respectively.

SðtÞ ¼ expð�~q2sÞ þ 1

ð4~l2 þ ~q2Þ2
I1ð~q; ~l; sÞ

þ 1

ð4~l2 þ ~q2Þ I2ð~q; ~l; sÞ; ðA:1Þ
Mðx ¼ 0; tÞ ¼ expð�~q2sÞ þ i~qI1ð~q; ~l; sÞ; ðA:2Þ
I1ð~q; ~l; sÞ ¼ expð�~q2sÞ½2~lþ ~qUið~qs1=2Þ�
� 2~l expð4~l2sÞ~Uð2~ls1=2Þ;

I2ð~q; ~l; sÞ ¼ 2~ls expð�~q2sÞ � ðs=pÞ1=2

þ expð�~q2sÞð~qs� 1=2~qÞUið~qs1=2Þ:

ðA:3Þ

Here ~UðxÞ ¼ 1� UðxÞ, UiðxÞ ¼ UðixÞ=i, UðxÞ is the error

function (e.g. [31]).
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